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Hamiltonian simulations

Schrodinger equation — evolution of a system:

.0
i) = HIg), (1.1)

but the Hilbert space is often infinite dimensional...

e Truncation of the Hilbert space to a vector space V
of size N

e Operators as matriceson YV

e Limit recovered when N — o0

Formalism suited for: tensor networks, quantum devices
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Lattice formulation

Gauge invariance:

U(e) = V@)UV e +a).  (12)

Inthe Ay = 0 gauge we find:

H=23" (L)) - ZTr 4(@) + Ul()],

T,1,a ,1>]

L,L,=R,R, |L,,U|=-1,U R,,Ly| =Ur,
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Representing the Hilbert space ()

A basis for the Hilbert space are the Lie algebra irreps (electric basis):

gsm, ) 5 5 €N/2 iml, [p] <j

Clebsh-Gordan expansion

Z 2J—1—1 1
JEN/2 23+1 2

1 .
Sy =, Blg, e+ B) |7, m +a,u+ B).

2

(1.3)

Thisis all fine in an infinite dimensional space, but...

In a finite Hilbert space we have to give up something (=2:

tr|A,B] =0
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Representing the Hilbert space (ll)
Clebsh-Gordan truncation Unitary links (our approach)

e Commutation relations e Commutation relations )¢

e Gauss law invariance: e Gauss law breaking:
[HaGa]:O [HaGa]#Ox

e Non unitary links )¢ e Unitary links

e Need penalty term for e U as gates — initial state

Galyp) =0X st.Gal¢p) =0
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Unitary links in the magnetic basis
e (z, u) — group manifold M = {p1,...,pn}. Diagonal links:

U = diag (U(p1),...,U(p1)) , pi € M
e Canonical momenta are Lie derivatives:

d - d .
Lof(U) = =i f("U) , Rof(U) = —i—f(Ue"™)

e Note: thisisjust likep = —i- in NRQM! |3)(z))
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U(1) theory
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Continuum limit on the manifold

Points on C are a basis:

Ula) = e a)

Uulx) eigenstates The momenta are simply
(abelian group):

................ .La:_i%
.RCL: Izdcfu
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U(2) theory
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Derivatives on S5

Eigenfunctions on S3 (Wigner D-

functions):

D(0, ¢, ) = e™’d), ,(0)e™

- 1 0 0 0 |
Li=¢e™ |+ - — F cot 0—
S R I WY

e,

Lg— Zaqb
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su(2) irreducible representations

(Z RQ) 4, m, @) (Z Lz) g, m, ) = 3G+ 1)|5,m, 1)

L3‘]7m7 :u> — j7 m, :u>
R3|j7m H> — —H j7 m, :u>
(L1 £ 1iLo)|j,m, ) = \/]]—I—l m(m £+ 1)|j,m + 1, u)
(Ry F iRo)|j,m, 1) = —1/3( + 1) — p(p £ 1)]j,m, p £ 1)

Now fix a truncation: j < g. We have IV, states:

N, — ZZJ+1 1(4q+3)(2q+2)(2q+1)~0()

Question: How many eigenstates of U can | reproduce in the discrete space?
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Truncated su(2) irreps (example)

L§ = Z > ld,m)ym{j,m|

J=0 |m|<j
- 0
'[1/2 0 ] 0 i
0 [1/2 0 ]
i 0 —1/2 p=—1/2] j=1/2
_0 0 [O]jzo

Question: How many of these survive after discretizing the S3?

Spoiler alert A\: It depends on the discretization (see e.g. M. Garofalo - Canonical
Momenta in Digitized SU(2) Lattice Gauge Theory)
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Frequencies on S5

S3 is a non-abelian manifold — N, points cannot sample N,
Fourier modes! (c.f. Shannon-Nyquist theorem)

No > Ny =

N. > (g+1/2)(4q + 1)2 q half integer
" (g +1)(4g +1)° ginteger

Physical consequence:

e U'U =UU'T =1 = 7 square matrix V of change of
basis between electric and magnetic basis.
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Canonical momenta on S5

partitionings (l)

e Vis at most rectangular — enlarging the space of the first
N, su(2) irreps.

e Presence of extra “garbage states”

What is the form of V/?

q J
f(@r) = £0, %) => Y VJ (6x)f(G,m,p)
J=0 m,u=—7j
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Discrete Jacobi Transform

W s

I (@) = (j+ 1/2)1/2
Vi) (ar) = (1 +1/2) NN,

D], (ap) (1.4)

e w, Gaussian weights of Legendre polynomials

o Vofsize Ny X N,
e VIV =1y .n, (butnot VVT =1y ,n,)
e dim[ker(V")] = N, — N,
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Properties of the discrete momenta
L,=VL, V', R, =VR, V!

Properties:

—Na

e Exact Lie algebra: 7 fape m= N

— Nq_1/2
e First N, eigenstates |j, m, ) reproduced exactly

e Commutation relations fulfilled for the first
N, = Ng_y1/;irreps

S. Romiti - Simulating the lattice SU(2) Hamiltonian with discrete manifolds

21


https://indico.fnal.gov/event/57249/contributions/268337/

Vacuum and Gauss Law

e Dense matrices for the momenta (local for ¢ — oo) X

o N, — N, states degenerate with the electric vacuum X{

— lift with projector Pj, — decoupled
e (G, H] # 0on N, — N, states. )X
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Preliminary results:
SU(2) in 1+1

dimensions
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Conclusion

We can’t have both unitary links and exact commutation relations on all
states:

L, U4 = UU'=UU=1X
UU'=UU =11 = [L,,U] X

Both unitary and non-unitay links formulations deserve to be considered

Unitary links limit the number of faithful represented electric eigenstates

Desirable feature: being able to reduce the dimensionality of the space,
e.g. constraining the values of the plaquette close to 1.
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Thank you for your
attention!
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Backup
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Truncated Clebsh-Gordan expansion

whena — 0 (I)
Approachinga — O...

Truncated Clebsh-Gordan exapansion: U don’t resemble
group elements anymore

e Need to check d critical point
e |[tisthe same as the continuum theory?
= what are the residual symmetries?

= can we exclude nasty operators?
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Discrete manifolds when a — O (Il)
Approachinga — 0...

Unitary links: U take values in the manifold

e Same as Lagrangian simulation (finite machine precision —
not exactly SU(2))

e Need to check 3 2nd order phase transition at finite NV
(Monte Carlo with same partitioning)

e Checkthatit has the same step scaling function
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U(1) theory:a — 0

In the continuum limita — 0

U,y eigenstates

Ll the plaquette approaches 1:
L 5
: : . 2 3 )
e U,ul/ — cla Fi,+0(a”) _ 1+ ZCL2P
e — restrict to the

corresponding eigenstates
gives an effective theory for
fine lattices (if correlation
length fits the lattice)
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